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Give n the constant coeffi c ient system x = Ax + Bu , re lationships are establi shed a mong the minimum 
pol ynomial (with respect to A) of the range of B, the degree and null space of thi s polynomial, the rank of the 
controllability ma trix and the degree of the minimum polynomia l of A. These relations lead to a simple proof of a 
theorem on reduction of control. 
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1. Introduction 

Given a se t of vectors B = {hI> h2 , ••• , br } and a square matrix A , we consider the following objects: 
The minimum polynomi al cf> (A ) of the linear span of B ; the dimension, p , of the A-invariant subspace 
generated by B; and the dimension, v , of the null space of cf> (A). Three lemmas are given which relate the 
degree of cf> , the degree of the minimum polynomial of A , and the quantities p and v _ 

The motiva tion and natural context for the lemmas is linear control theory . The lemmas are used to prove 
a theorem in control theory. The result is known but the proof here is very simple as well as elementary 
(which is not the same thing). 

Both the concept and language of controllability matrices and controllable subspaces have recently 
appeared frequently [1 , 10, 12, 13]1 in the con text of abs tract linear algebra . Thus th e lemmas of this paper 
are of possible interest in their own right. 

2. Preliminaries 

In what follows the underlying vector space is the set of all complex n-tuples . All matrices considered 
have complex entri es . For any matrix M we denote by R(M ), p (M) and N(M) the range, rank (dimension of 
th e range) and null space respectively. For any column vector y we denote by y* the conjugate transpose of 
y. Employing classical terminology, we call a square matrix nonderogatory whenever the mi nimum 
polynomial of A coincides with the characteri stic polynomial. Such a matrix is sometimes called cyclic [7]. 
A nonderoga tory matrix can be characte rized by its elementary divisor structure or by its Jordan form (e.g. , 
see [11] p. 13) . It is easy to see tha t a matrix is nonderogatory if and only if the characteristic polynomials of 
its Jordan block are pairwise rela tively prime. Equivalently, a matrix is nonderogatory if and only if dis tinct 
Jordan blocks involve distinct roots of the characteristic polynomial. In the literature of control theory this 
latter property is often invoked (e.g., see [8], p . 86) and the term non derogatory not used at all . 

Given a square matrix A and a vector v, the minimum polynomial of v with respect to A is that monic 
polynomial , p , of minimal degree such that p(A)v = O. When the matrix A is understood or clear from 
context we simply refer to the minimum polynomial of a vector. The minimum polynomial of v is clearly 
unique and it divides without remainder any polynomial which annihilates v [2, 6, 7]. In principle the 
minimum polynomial of v is constructed as follows: consider the sequence defined b y Vo = v , Vi = AVI- l = 
Aiv , i = 1,2,3, .. . . There will be a fi rst vector which is linearly dependent on the preceding ones. Let it 
be v • . Then for some scalars ao, at> . .. , as , not all zero with a. = 1, we have aovo + alvl + . .. + 
a .- lVS- l + Vs = p(A) v = 0, where p(A) = a o + alA + .. . + as_1As- 1 + AS . Thus p(A) annihilates v and 
by construction is the monic polynomial of least degree which does so. 

Given a subspace S, the minimum polynomial of S (with respect to a matrix A) is the monic polynomial, w, 
of least degree such that w(A)x = 0, for each XES. If we determine the minimum polynomial for each vector 
of a basis set in S, then clearly the least common multiple of these polynomials is the minimum polynomial 
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of S. The minimum polynomial of a subspace S, since it is an annihilating polynomial for each vector in S, 

contains as a divisor the minimum polynomial of every vector in S. 
It is a standard theorem [2, 6, 7, 9] that given an n-square matrix A, there exists in n-space a vector 

whose minimum polynomial coincides with the minimum polynomial of A (which, of course, is the minimum 

polynomial of the entire space). Some of these proofs [2] [6] , but not others [7] [9], are easily adapted to 

prove that in any proper subspace there exists a vector whose minimum polynomial coincides with the 
minimum polynomial of the subspace. This is a result which we will need in what follows. Recently [5] an 

elegant proof has been given but the proof pivots on a quite technical lemma. The proof (for the whole space) 
in [6] is, characteristically, extremely short and it draws only on the concepts discussed in this section. For 

completeness, we give here the (trivial) modification which adapts this proof to a (possibly) proper subspace 

and we render the logical sequence somewhat less succinct. 
THEOREM 1: Let S be any subspace and A a given square matrix. Then there exists a vector vE S such that 

the minimum polynomial oj v is the minimum polynomial oj S. 
PROOF (Householder): We assume the dimension of S to be two or more, since otherwise the theorem is 

obvious. Let y E S be a vector whose minimum polynomial, J, is of maximal degree in S. Let UE S be any 
vector, linearly independent of v, with minimum polynomial g. Then w, the least common multiple off and 

g, annihilates every vector in the (u, v)-plane and thus contains as divisor the minimum polynomial of every 
vector in the (u, v)-plane. But w has finitely many divisors and thus there must exist in the (u, v)-plane 
independent vectors a and b each with the same minimum polynomial, h. Thus, h annihilates every vector 

in the (a, b)-plane which is the (u, v)-plane. In particular h annihilates v. As an annihilating polynomial of 
v, h is divisible by J and hence degree h ~ degree! But as the minimum polynomial of a vector in S, 

degree h ::::; degreeJ, since the degree ofJ is maximal. ThusJ = h. It follows thatf annihilates every vector 

in the (u, v)-plane, and since u was arbitrary (so long as it was not a multiple of v)f annihilates S. Plainly no 
polynomial of lesser degree can do so, andJ is the minimum polynomial of S. 

A linear, constant coefficient system 

x = Ax + Bu, (1) 

where A is n-square and B is nxr, is said to be (completely) controllable if for each pair of vectors a, b there 
exists a control vector u such that x = a at t = 0 and x = b at t = T, for some finite T. The system (1) is 

controllable if and only if the matrix 

(2) 

has rank n. The matrix C is defined as the controllability matrix and its range R(C) as the controllability 

space. The controllability space is obviously the smallest subspace, invariant under A, containing R(B). For, 
we observe that any A -invariant subspace containing R(B) contains each column of C. When the system (1) 
is controllable (not controllable) it is sometimes said that (A,B) is controllable (not controllable) and we use 

this terminology. 

3. Lemmas and Theorem 

Consider an n-square matrix A and an nxr matrix B. Let cf> be the minimum polynomial, with respect to A, 
of the subspace R(B) and the degree of cf> be d. We denote by N(cf» the null space of <PeA) and denote the 
dimension of N( cf» by v. We denote the degree of the minimum polynomial of A by m. The matrix C is 

defined as in (2). 

LEMMA 1: 

v ~ P(C) ~ d ::::; m. 

PROOF: Let XEN(.p). Then cf>(A)Ax = A cf>(A)x = 0 and hence Ax E N(cf». Thus N(cf» is an A-invariant 
subspace and it clearly contains R(B) which cf>(A) annihilates. But R(C) is the smallest such subspace and 
we have R(C) ~ N(cf» and hence v ~ p(C). By Theorem 1, there is at least one vector, b, in R(B) whose 

minimum polynomial coincides with cf>. Let this vector be augmented to a basis for R(B) and let B be the 
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matrix whose columns are these basis vectors. If C [B , AB, .. . , A n- IB], then p(C) = p(C) , Since the 

columns of C and of C clearly s pan the same subspace . But C has at least d linearly independent columns, 
namely b, Ah , ... , A d- 1b, since the minimum polynomial of b is of degree d. Thus we have p(C) = p(C) 2': 

d. Finally, it is trivial that d neve r exceeds m and this completes the proof. 

LEMMA 2: We have v = n if and only if d = m. 

PROOF: By Lemma 1 and the stand ard rank-nullity Theorem we have 

p(C) :S n - p(1)) = v (3 ) 

where p( 1» is the rank of 1>(A). From this inequality, v = n implies p( 1» = 0 or tha t 1>(A) = O. But this 

requires d = m. For, 1>(A) = 0 means that 1> is divisible by 'I' the minimum pol ynomial of A while the 

degree, d, of 1> never exceeds m. Conversely assume d = m. We observe that 'I' is always divisible by 1>. 
For, 'I' annihilates all of R (f3), is thus divisible by the minimum polynomial of eve ry vector in R (f3) but, by 
Theorem 1, there is a vector in R{f3) whose minimum polynomial is 1>. Thus when 1> and 'I' are of the same 
degree we must have 1> = '1', which means v = n. This completes the proof. 

LEMMA 3: (f (A, B) is controllable, then 

n = v = P(C) 2': d = m. 

PROOF: If (A,B) is co ntrollabl e then P(C) = n. Since v :S n, always, we read from Lemma 1 that v = n. 
This be ing the case, d = m follows from Lemma 2. This co mpletes the proof. 

REMARK: From (3), we can have a very direct proof, without Lemma 2, that P(C) = n implies d = m. 
For, assume d < m . The n, p( 1» cannot be zero and (3) tells that P(C) :S n - l. 

Given that the system (1) is controllable with a vector controller, u , it may be possible to control the 

system by a choice such as u = Fy, whe re F is an rxk matrix, k < r, and y is a k-vec tor. This reduction of 
the control s pace from r to k dimensions, when possible, is of obvious advantage both prac tically and 

theoretically. In particular , since many control problems depend solely upon the prope rty of controllability, 
theoretical analysis may be simplified by dealing with the reduced system. 

The ultimate in control reduction is the case k = 1, when F = c is an r-vector and y is a scalar 

controller: u(t) = cy(t). In this case we inquire for a vec tor bER{f3) such that the system 

x=Ax +by (1') 

is co ntroll able whenever the system (1) is controllable. Necessary and suffic ient conditions for this follow 

readily from the lemmas and a re set forth in the following theorem. 
THEOREM 2: The /ollowing conditions are equivalent. 

(i) The pair (A, B) is controllable and A is nonderogatory 
(ii) d = n 
(iii) There exists a hER(B) such that (A, b) is controllable. 

PROOF: That (i) implies (ii) follow s from Lemma 3 by setting m = n. That (ii) implies (i) follows from 

Lemma 1 by setting d = n. If we assume (ii), then by Theorem 1 there is a vector bER(B) whose minimum 
polynomial is of degree d = n. It follows that (A, b) is controllable and that (ii) implies (iii). If there exists a 

vector bER(B) such that (A, b) is controllable then that vector clearly cannot have minimum polynomial of 

degree less than n. Thus no polynomial of degree less than n can annihilate R(B). Thus d 2': n and hence d 
= n, so that (iii) implies (ii). This completes the proof of the theorem. 

In [8] , th eorem 6, p. 86, it is shown that given the controllability of (1) then (I') is controllable for some 

bER(B) if and only if A is nonderogatory. (Observe that we have shown that controllability of (I') for some 

bER(B) implies both that A is non derogatory and that (1) is controllable) The proof in [8] is very involved 

and hinges on extensive Jordan form manipulation . The implications (i) ~ (iii) can be deduced from a rnore 
general but fairly complicated theorem due to Heymann [4, theorem 2 , p. 565]. The implication (i) :;, (iii) 

follows from theorem 2 of [3]. 
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If we are interested only in Theorem 2, the several quite direct proofs are available. We give one such 
alternative proof: That (i) implies (ii) follows at once from the Remark. That (ii) implies (iii) is proved as in 
the proof of Theorem 2. Given (iii), we have n = m. For, otherwise b, Ab, ... , An- 1b would be linearly 
dependent as expressed by 'I'(A)b = O. We also have p(C) = n, since the linear span of b, Ab , ... , An- tb 
is contained in R(C). Thus (iii) implies (i). 
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